7479.
На рис. 28.5, а, б указаны положения главной оптической оси MN сферического зеркала, светящейся точки 5 и ее изображения S'. Найти построением положения оптического центра О зеркала, его полюса Р и главного фокуса F. Определить, вогнутым или выпуклым является данное зеркало. Будет ли изображение действительным или мнимым?
7480.
Вогнутое зеркало дает на экране изображение Солнца в виде кружка диаметром d=28 мм. Диаметр Солнца на небе в угловой мере β=32'. Определить радиус R кривизны зеркала.
7481.
Радиус R кривизны выпуклого зеркала равен 50 см. Предмет высотой h=15 см находится на расстоянии а, равном 1 м, от зеркала. Определить расстояние b от зеркала до изображения и его высоту Н.
7482.
На рис. 28,6, а, б указаны положения главной оптической оси MN сферического зеркала и ход луча 1. Построить ход луча 2 после отражения его от зеркала.
7483.
На столе лежит лист бумаги. Луч света, падающий на бумагу под углом ε=30°, дает на ней светлое пятно. Насколько сместится это пятно, если на бумагу положить плоскопараллельную стеклянную пластину толщиной d=5 см?
7484.
Луч падает под углом ε=60° на стеклянную пластинку толщиной d=30 мм. Определить боковое смещение Δx; луча после выхода из пластинки.
7485.
Пучок параллельных лучей падает на толстую стеклянную пластину под углом ε=60°, и преломляясь переходит в стекло. Ширина а пучка в воздухе равна 10 см. Определить ширину b пучка в стекле.
7486.
Луч света переходит из среды с показателем преломления n1 в среду с показателем преломления n2. Показать, что если угол между отраженным и преломленным лучами равен π/2, то выполняется условие tgε1=n2/n1 (ε1 — угол падения).
7487.
Луч света падает на грань призмы с показателем преломления п под малым углом. Показать, что если преломляющий угол θ призмы мал, то угол отклонения σ лучей не зависит от угла падения и равен θ(n-1).
7488.
На стеклянную призму с преломляющим углом θ=60° падает луч света. Определить показатель преломления n стекла, если при симметричном ходе луча в призме угол отклонения σ=40°.
7489.
Преломляющий угол θ стеклянной призмы равен 30°. Луч света падает на грань призмы перпендикулярно ее поверхности и выходит в воздух из другой грани, отклоняясь на угол σ=20° от первоначального направления. Определить показатель преломления n стекла.
7490.
Луч света падает на грань стеклянной призмы перпендикулярно ее поверхности и выходит из противоположной грани, отклонившись на угол σ=25° от первоначального направления. Определить преломляющий угол θ призмы.
7491.
На грань стеклянной призмы с преломляющим углом θ=60° падает луч света под углом ε1=45°. Найти угол преломления ε2’, луча при выходе из призмы и угол отклонения σ луча от первоначального направления.
7492.
Преломляющий угол θ призмы равен 60°. Угол наименьшего отклонения луча от первоначального направления σ=30°. Определить показатель преломления n стекла, из которого изготовлена призма.
7493.
Преломляющий угол θ призмы, имеющей форму острого клина, равен 2°. Определить угол наименьшего отклонения σmin луча при прохождении через призму, если показатель преломления n стекла призмы равен 1,6.
7494.
На тонкую линзу падает луч света. Найти построением ход луча после преломления его линзой: а) собирающей (рис. 28.7, а); б) рассеивающей (рис. 28,7 б). На рисунке: O — оптический центр линзы; F — главный фокус.
7495.
На рис. 28.8, а, б, указаны положения главной оптической оси MN линзы и ход луча 1. Построить ход луча 2 после преломления его линзой.
7496.
Найти построением положение светящейся точки, если известен ход лучей после преломления их в линзах: а) собирающей (рис. 28.9, а); б) рассеивающей (рис. 28.9, б). На рисунке: О — оптический центр линзы; F — ее главный фокус.
7497.
На рис. 28.10, а, б указаны положения главной оптической оси MN тонкой линзы, светящейся точки S и ее изображения S'. Найти построением положения оптического центра О линзы и ее фокусов F. Указать, собирающей или рассеивающей будет данная линза. Будет ли изображение действительным или мнимым?
7498.
Линза, расположенная на оптической скамье между лампочкой и экраном, дает на экране резко увеличенное изображение лампочки. Когда Лампочку передвинули Δl=40 см ближе к экрану, на нем появилось резко уменьшенное, изображение лампочки. Определить фокусное расстояние f линзы, если расстояние l от лампочки до экрана равно 80 см.
7499.
Каково наименьшее возможное расстояние l между предметом и его действительным изображением, создаваемым собирающей линзой с главным фокусным расстоянием f=12 см?
7500.
Человек движется вдоль главной оптической оси объектива фотоаппарата со скоростью ν=5 м/с. С какой скоростью и необходимо перемещать матовое стекло фотоаппарата, чтобы изображение человека на нем все время оставалось резким. Главное фокусное расстояние f объектива равно 20 см. Вычисления выполнить для случая, когда человек находился на расстоянии а=10 м от фотоаппарата.
7501.
Из стекла требуется изготовить плосковыпуклую линзу, оптическая сила Ф которой равна 5 дптр. Определить радиус R кривизны выпуклой поверхности линзы.
7502.
Двояковыпуклая линза имеет одинаковые радиусы кривизны поверхностей. При каком радиусе кривизны R поверхностей линзы главное фокусное расстояние f ее будет равно 20 см?
7503.
Отношение k радиусов кривизны поверхностей линзы равно 2. При каком радиусе кривизны R. выпуклой поверхности оптическая сила Ф линзы равна 10 дптр?
7504.
Определить радиус R кривизны выпуклой поверхности линзы, если при отношении k радиусов кривизны поверхностей линзы, равном 3, ее оптическая сила Ф=-8 дптр.
7505.
Из двух часовых стекол с одинаковыми радиусами R кривизны, равными 0,5 м, склеена двуяковогнутая «воздушная» линза. Какой оптической силой Ф будет обладать такая линза в воде?
7506.
Линза изготовлена из стекла, показатель преломления которого для красных лучей nк=1,50, для фиолетовых nф=1,52. Радиусы кривизны R обеих поверхностей линзы одинаковы и равны 1 м. Определить расстояние Δf между фокусами линзы для красных и фиолетовых лучей.
7507.
Определить главное фокусное расстояние f плосковыпуклой линзы, диаметр d которой равен 10 см. Толщина h в центре линзы равна 1 см, толщину у краев можно принять равной нулю.
7508.
Определить оптическую силу Ф мениска, если радиусы кривизны R1 и R2 его выпуклой и вогнутой поверхностей равны соответственно 1 м и 40 см.
7509.
Главное фокусное расстояние f собирающей линзы в воздухе равно 10 см. Определить, чему оно равно: 1) в воде; 2) в коричном масле.
7510.
У линзы, находящейся в воздухе, фокусное расстояние f1=5 см, а погруженной в раствор сахара f2=35 см. Определить показатель преломления n раствора.
7511.
Тонкая линза, помещенная в воздухе, обладает оптической силой Ф1=5 дптр, а в некоторой жидкости Ф2=-0,48 дптр. Определить показатель преломления n2 жидкости, если показатель преломления n1 стекла, из которого изготовлена линза, равен 1,52.
7512.
Доказать, что оптическая сила Ф системы двух сложенных вплотную тонких линз равна сумме оптических сил Ф1 и Ф2 каждой из этих линз.
7513.
В вогнутое сферическое зеркало радиусом R=20 см налит тонким слоем глицерин. Определить главное фокусное расстояние f такой системы.
7514.
Плосковыпуклая линза имеет оптическую силу Ф1=4 дптр. Выпуклую поверхность линзы посеребрили. Найти оптическую силу Ф2 такого сферического зеркала.
7515.
Поверх выпуклого сферического зеркала радиусом кривизны R=20 см налили тонкий слой воды. Определить главное фокусное расстояние f такой системы.
7516.
Человек без очков читает книгу, располагая ее перед собой на расстоянии а=12,5 см. Какой оптической силы Ф очки следует ему носить?
7517.
Пределы аккомодации глаза близорукого человека без очков лежат между a1=16 см и a2=80 см. В очках он хорошо видит удаленные предметы. На каком минимальном расстоянии d он может держать книгу при чтении в очках?
7518.
Лупа, представляющая собой двояковыпуклую линзу, изготовлена из стекла с показателем преломления n=1,6. Радиусы кривизны R поверхностей линзы одинаковы и равны 12 см. Определить увеличение Г лупы.
7519.
Лупа дает увеличение Г=2. Вплотную к ней приложили собирательную линзу с оптической силой Ф1=20 дптр. Какое увеличение Г2 будет давать такая составная лупа?
7520.
Оптическая сила Ф объектива телескопа равна 0,5 дптр. Окуляр действует как лупа, дающая увеличение Г1=10. Какое увеличение Г2 дает телескоп?
7521.
При окуляре с фокусным расстоянием f=50 мм телескоп дает угловое увеличение Г1=60. Какое угловое увеличение Г2 даст один объектив, если убрать окуляр и рассматривать действительное изображение, созданное объективом, невооруженным глазом с расстояния наилучшего зрения?
7522.
Фокусное расстояние f1 объектива телескопа равно 1 м. В телескоп рассматривали здание, находящееся на расстоянии а=1 км. В каком направлении и на сколько нужно передвинуть окуляр, чтобы получить резкое изображение в двух случаях: 1) если после здания будут рассматривать Луну; 2) если вместо Луны будут рассматривать близкие предметы, находящиеся на расстоянии a1=100 м?
7523.
Телескоп наведен на Солнце. Фокусное расстояние f1 объектива телескопа равно 3 м. Окуляр с фокусным расстоянием f2=50 мм проецирует действительное изображение Солнца, созданное объективом, на экран, расположенный на расстоянии b=60 см от окуляра. Плоскость экрана перпендикулярна оптической оси телескопа. Определить линейный диаметр d изображения Солнца на экране, если диаметр Солнца на небе виден невооруженным глазом под углом α=32'.
7524.
Фокусное расстояние f1 объектива микроскопа равно 8 мм, окуляра f2=4 см. Предмет находится на Δа=0,5 мм дальше от объектива, чем главный фокус. Определить увеличение Г микроскопа.
7525.
Фокусное расстояние f1 объектива микроскопа равно 1 см, окуляра f2=2 см. Расстояние от объектива до окуляра L=23 см. Какое увеличение Г дает микроскоп? На каком расстоянии а от объектива находится предмет?
7526.
Расстояние δ между фокусами объектива и окуляра внутри микроскопа равно 16 см. Фокусное расстояние f1 объектива равно 1 мм. С каким фокусным расстоянием f2 следует взять окуляр, чтобы получить увеличение Г=500?
7527.
Определить силу света I точечного источника, полный световой поток Ф которого равен 1 лм.
7528.
Лампочка, потребляющая мощность Р=75 Вт, создает на расстоянии r=3 м при нормальном падении лучей освещенность E=8 лк. Определить удельную мощность р лампочки (в ваттах на канделу) и световую отдачу η лампочки (в люменах на ватт).
7529.
В вершине кругового конуса находится точечный источник света, посылающий внутри конуса световой поток Ф=76 лм. Сила света I источника равна 120 кд. Определить телесный угол ω и угол раствора 2θ конуса.
7530.
Какую силу тока I покажет гальванометр, присоединенный к селеновому фотоэлементу, если на расстоянии r=75 см от него поместить лампочку, полный световой поток Ф0 которой равен 1,2 клм? Площадь рабочей поверхности фотоэлемента равна 10 см2, чувствительность i=300 мкА/лм.
7531.
Лампочка силой света I=80 кд находится на расстоянии а=2 м от собирательной линзы с диаметром d=12 см и главным фокусным расстоянием f=40 см. Линза дает на экране, расположенном на расстоянии b=30 см от линзы, круглое светлое пятно. Найти освещенность Е экрана на месте этого пятна. Поглощением света в линзе пренебречь.
7532.
При печатании фотоснимка негатив освещался в течение t1=3 с лампочкой силой света I1=15 кд с расстояния r1=50 см. Определить время t2, в течение которого нужно освещать негатив лампочкой силой света I2=60 кд с расстояния r2=2 м, чтобы получить отпечаток с такой же степенью почернения, как и в первом случае?
7533.
На высоте h=3 м над землей и на расстоянии r=4 м от стены висит лампа силой света I=100 кд. Определить освещенность Е1 стены и Е2 горизонтальной поверхности земли у линии их пересечения.
7534.
На мачте высотой h=8 м висит лампа силой света I=1 ккд. Принимая лампу за точечный источник света, определить, на каком расстоянии l от основания мачты освещенность Е поверхности земли равна 1 лк.
7535.
Над центром круглой площадки висит лампа. Освещенность E1 в центре площадки равна 40 лк, Е2 на краю площадки равна 5 лк. Под каким углом в падают лучи на край площадки?
7536.
Над центром круглого стола радиусом r=80 см на высоте h=60 см висит лампа силой света I=100 кд. Определить: 1) освещенность E1 в центре стола; 2) освещенность E2 на краю стола; 3) световой поток Ф, падающий на стол; 4) среднюю освещенность стола.
7537.
На какой высоте h над центром круглого стола радиусом r=1 м нужно повесить лампочку, чтобы освещенность на краю стола была максимальной?
7538.
Отверстие в корпусе фонаря закрыто плоским молочным стеклом размером 10×15 см. Сила света I фонаря в направлении, составляющем угол φ=60° с нормалью, равна 15 кд. Определить яркость L стекла.
7539.
Вычислить и сравнить между собой силы света раскаленного металлического шарика яркостью L1=3 Мкд/м2 и шарового светильника яркостью L2=5 ккд/м2, если их диаметры d1 и d2 соответственно равны 2 мм и 20 см.
7540.
Светильник из молочного стекла имеет форму шара диаметром d=20 см. Сила света I шара равна 80 кд. Определить полный световой поток Ф, светимость М и яркость L светильника.
7541.
Солнце, находясь вблизи зенита, создает на горизонтальной поверхности освещенность E=0,1 Млк. Диаметр Солнца виден под углом α=32'. Определить видимую яркость L Солнца.
7542.
Длина l раскаленной добела металлической нити равна 30 см, диаметр d=0,2 мм. Сила света I нити в перпендикулярном ей направлении равна 24 кд. Определить яркость L нити.
7543.
Яркость L светящегося куба одинакова во всех направлениях и равна 5 ккд/м2. Ребро а куба равно 20 см. В каком направлении сила света I куба максимальна? Определить максимальную силу света Imах куба.
7544.
Светящийся конус имеет одинаковую во всех направлениях яркость B=2 ккд/м2. Основание конуса не светится. Диаметр d основания равен 20 см, высота h=15 см. Определить силу света I конуса в направлениях: 1) вдоль оси; 2) перпендикулярном оси.
7545.
На высоте h=1 м над горизонтальной плоскостью параллельно ей расположен небольшой светящийся диск. Сила света I0 диска в направлении его оси равна 100 кд. Принимая диск за точечный источник с косинусным распределением силы света, найти освещенность Е горизонтальной плоскости в точке А, удаленной на расстояние r=3 м от точки, расположенной под центром диска.
7546.
На какой высоте h над горизонтальной плоскостью (см. предыдущую задачу) нужно поместить светящийся диск, чтобы освещенность в точке А была максимальной?
7547.
Определить освещенность Е, светимость М и яркость L киноэкрана, равномерно рассеивающего свет во всех направлениях, если световой поток Ф, падающий на экран из объектива киноаппарата (без киноленты), равен 1,75 клм. Размер экрана 5×3,6 м, коэффициент отражения ρ=0,75.
7548.
На какой высоте h нужно повесить лампочку силой света I=10 кд над листом матовой белой бумаги, чтобы яркость L бумаги была равна 1 кд/м2, если коэффициент отражения ρ бумаги равен 0,8?
7549.
Освещенность Е поверхности, покрытой слоем сажи, равна 150 лк, яркость L одинакова во всех направлениях и равна 1 кд/м2. Определить коэффициент отражения ρ сажи.
7550.
Сколько длин волн монохроматического света с частотой колебаний ν=5•1014 Гц уложится на пути длиной l=1,2 мм: 1) в вакууме; 2) в стекле?
7551.
Определить длину l1 отрезка, на котором укладывается столько же длин волн в вакууме, сколько их укладывается на отрезке l2=3 мм в воде.
7552.
Какой длины l1 путь пройдет фронт волны монохроматического света в вакууме за то же время, за какое он проходит путь длиной l2=1 м в воде?
7553.
На пути световой волны, идущей в воздухе, поставили стеклянную пластинку толщиной h=1 мм. На сколько изменится оптическая длина пути, если волна падает на пластинку: 1) нормально; 2) под углом ε=30°?
7554.
На пути монохроматического света с длиной волны λ=0,6 мкм находится плоскопараллельная стеклянная пластина толщиной d=0,l мм. Свет падает на пластину нормально. На какой угол φ следует повернуть пластину, чтобы оптическая длина пути L изменилась на λ/2?
7555.
Два параллельных пучка световых волн I и II падают на стеклянную призму с преломляющим углом θ=30° и после преломления выходят из нее (рис. 30.6). Найти оптическую разность хода Δ световых волн после преломления их призмой.
7556.
Оптическая разность хода Δ двух интерферирующих волн монохроматического света равна 0,3λ. Определить разность фаз Δφ.
7557.
Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут: 1) максимально усилены; 2) максимально ослаблены при оптической разности хода Δ интерферирующих волн, равной 1,8 мкм.
7558.
Расстояние d между двумя когерентными источниками света (λ=0,5 мкм) равно 0,1 мм. Расстояние b между интерференционными полосами на экране в средней части интерференционной картины равно 1 см. Определить расстояние l от источников до экрана.
7559.
Расстояние d между двумя щелями в опыте Юнга равно 1 мм, расстояние l от щелей до экрана равно 3 м. Определить длину волны λ, испускаемой источником монохроматического света, если ширина b полос интерференции на экране равна 1,5 мм.
7560.
В опыте Юнга расстояние d между щелями равно 0,8 мм. На каком расстоянии l от щелей следует расположить экран, чтобы ширина b интерференционной полосы оказалась равной 2 мм?
7561.
В опыте с зеркалами Френеля расстояние d между мнимыми изображениями источника света равно 0,5 мм, расстояние l от них до экрана равно 3 м. Длина волны λ=0,6 мкм. Определить ширину b полос интерференции на экране.
7562.
Источник S света (λ=0,6 мкм) и плоское зеркало М расположены, как показано на рис. 30.7 (зеркало Ллойда). Что будет наблюдаться в точке Р экрана, где сходятся лучи SP и SMP,— свет или темнота, если |SP|=r=2 м, a=0,55 мм, |SM|=|MP|?
7563.
При некотором расположении зеркала Ллойда ширина b интерференционной полосы на экране оказалась равной 1 мм. После того как зеркало сместили параллельно самому себе на расстояние Δd=0,3 мм, ширина интерференционной полосы изменилась. В каком направлении и на какое расстояние Δl следует переместить экран, чтобы ширина интерференционной полосы осталась прежней? Длина волны λ монохроматического света равна 0,6 мкм.
7564.
Плоскопараллельная стеклянная пластинка толщиной d=1,2 мкм и показателем преломления n=1,5 помещена между двумя средами с показателями преломления n1 и n2 (рис. 30.8). Свет с длиной волны λ=0,6 мкм падает нормально на пластинку. Определить оптическую разность хода Δ волн 1 и 2, отраженных от верхней и нижней поверхностей пластинки, и указать, усиление или ослабление интенсивности света происходит при интерференции в следующих случаях: 1) n1<n<n2; 2) n1>n>n2; 3) n1<n>n2; 4) n1>n<n2.
7565.
На мыльную пленку (n=1,3), находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине d пленки отраженный свет с длиной волны λ=0,55 мкм окажется максимально усиленным в результате интерференции?
7566.
Пучок монохроматических (λ=0,6 мкм) световых волн падает под углом ε1=30° на находящуюся в воздухе мыльную пленку (n=1,3). При какой наименьшей толщине d пленки отраженные световые волны будут максимально ослаблены интерференцией? максимально усилены?
7567.
На тонкий стеклянный клин (n=1,55) падает нормально монохроматический свет. Двугранный угол α между поверхностями клина равен 2'. Определить длину световой волны λ, если расстояние b между смежными интерференционными максимумами в отраженном свете равно 0,3 мм.
7568.
Поверхности стеклянного клина образуют между собой угол θ=0,2'. На клин нормально к его поверхности падает пучок лучей монохроматического света с длиной волны λ=0,55 мкм. Определить ширину b интерференционной полосы.
7569.
На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет (λ=600 нм). Определить угол θ между поверхностями клина, если расстояние b между смежными интерференционными минимумами в отраженном свете равно 4 мм.
7570.
Между двумя плоскопараллельными стеклянными пластинками положили очень тонкую проволочку, расположенную параллельно линии соприкосновения пластинок и находящуюся на расстоянии l=75 мм от нее. В отраженном свете (λ=0,5 мкм) на верхней пластинке видны интерференционные полосы. Определить диаметр d поперечного сечения проволочки, если на протяжении а=30 мм насчитывается m=16 светлых полос.
7571.
Две плоскопараллельные стеклянные пластинки приложены одна к другой так, что между ними образовался воздушный клин с углом θ, равным 30". На одну из пластинок падает нормально монохроматический свет (λ=0,6 мкм). На каких расстояниях l1 и l2 от линии соприкосновения пластинок будут наблюдаться в отраженном свете первая и вторая светлые полосы (интерференционные максимумы)?
7572.
Две плоскопараллельные стеклянные пластинки образуют клин с углом θ=30'. Пространство между пластинками заполнено глицерином. На клин нормально к его поверхности падает пучок монохроматического света с длиной волны λ=500 нм. В отраженном свете наблюдается интерференционная картина. Какое число N темных интерференционных полос приходится на 1 см длины клина?
7573.
Расстояние Δr2,1 между вторым и первым темным кольцами Ньютона в отраженном свете равно 1 мм. Определить расстояние Δr10,9 между десятым и девятым кольцами.
7574.
Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке. Определить толщину d слоя воздуха там, где в отраженном свете (λ=0,6 мкм) видно первое светлое кольцо Ньютона.
7575.
Диаметр d2 второго светлого кольца Ньютона при наблюдении в отраженном свете (λ=0,6 мкм) равен 1,2 мм. Определить оптическую силу D плосковыпуклой линзы, взятой для опыта.
7576.
Плосковыпуклая линза с оптической силой Ф=2 дптр выпуклой стороной лежит на стеклянной пластинке. Радиус r, четвертого темного кольца Ньютона в проходящем свете равен 0,7 мм. Определить длину световой волны.
7577.
Диаметры di и dk двух светлых колец Ньютона соответственно равны 4,0 и 4,8 мм. Порядковые номера колец не определялись, но известно, что между двумя измеренными кольцами расположено три светлых кольца. Кольца наблюдались в отраженном свете (λ=500 нм). Найти радиус кривизны плосковыпуклой линзы, взятой для опыта.
7578.
Между стеклянной пластинкой и лежащей на ней плосковыпуклой стеклянной линзой налита жидкость, показатель преломления которой меньше показателя преломления стекла. Радиус r8 восьмого темного кольца Ньютона при наблюдении в отраженном свете (λ=700 нм) равен 2 мм. Радиус R кривизны выпуклой поверхности линзы равен 1 м. Найти показатель преломления n жидкости.
7579.
На установке для наблюдения колец Ньютона был измерен в отраженном свете радиус третьего темного кольца (k=3). Когда пространство между плоскопараллельной пластиной и линзой заполнили жидкостью, то тот же радиус стало иметь кольцо с номером, на единицу большим. Определить показатель преломления п жидкости.
7580.
В установке для наблюдения колец Ньютона свет с длиной волны λ=0,5 мкм падает нормально на плосковыпуклую линзу с радиусом кривизны R1=1 м, положенную выпуклой стороной на вогнутую поверхность плосковогнутой линзы с радиусом кривизны R2=2 м. Определить радиус r3 третьего темного кольца Ньютона, наблюдаемого в отраженном свете.