Решение задач по физике. Онлайн-база готовых решений.

Поиск по задачам:
 Вход на сайт

Логин:
Пароль:
Регистрация
Забыли пароль?
 Навигация

 Опросы

Сколько задач Вы нашли у нас?

10%

20-30%

40-60%
60-80%
80-100%

Только для зарегестрированных пользователей
опросы пока не работают

8397. Объем водорода при изотермическом расширении при температуре Т=300 К увеличился в n=3 раза. Определить работу А, совершенную газом, и теплоту Q, полученную при этом. Масса m водорода равна 200 г. 8398. Азот массой m=0,1 кг был изобарно нагрет от температуры T1=200 К до температуры T2=400 К. Определить работу А, совершенную газом, полученную им теплоту Q и изменение ΔU внутренней энергии азота. 8399. Во сколько раз увеличится объем водорода, содержащий количество вещества ν=0,4 моль при изотермическом расширении, если при этом газ получит количество теплоты Q=800 Дж? Температура водорода T=300 К. 8400. Какая работа А совершается при изотермическом расширении водорода массой m=5 г, взятого при температуре T=290 К, если объем газа увеличивается в три раза? 8401. Какая доля w1 количества теплоты Q, подводимого к идеальному двухатомному газу при изобарном процессе, расходуется на увеличение ΔU внутренней энергии газа и какая доля w2 — на работу А расширения? Рассмотреть три случая, если газ: 1) одноатомный; 2) двухатомный; 3) трехатомный. 8402. Определить работу А, которую совершит азот, если ему при постоянном давлении сообщить количество теплоты Q=21 кДж. Найти также изменение ΔU внутренней энергии газа. 8403. Идеальный газ совершает цикл Карно при температурах теплоприемника T2=290 К и теплоотдатчика T1=400 К. Во сколько раз увеличится коэффициент полезного действия η цикла, если температура теплоотдатчика возрастет до T1'=600 К? 8404. Идеальный газ совершает цикл Карно. Температура Т1 теплоотдатчика в четыре раза (n=4) больше температуры теплоприемника. Какую долю w количества теплоты, полученного за один цикл от теплоотдатчика, газ отдаст теплоприемнику? 8405. Определить работу А2 изотермического сжатия газа, совершающего цикл Карно, КПД которого η=0,4, если работа изотермического расширения равна А1=8 Дж. 8406. Газ, совершающий цикл Карно, отдал теплоприемнику теплоту Q2=14 кДж. Определить температуру Т1 теплоотдатчика, если при температуре теплоприемника T2=280 К работа цикла A=6 кДж. 8407. Газ, являясь рабочим веществом в цикле Карно, получил от теплоотдатчика теплоту Q1=4,38 кДж и совершил работу A=2,4 кДж. Определить температуру теплоотдатчика, если температура теплоприемника T2=273 К. 8408. Газ, совершающий цикл Карно, отдал теплоприемнику 67% теплоты, полученной от теплоотдатчика. Определить температуру T2 теплоприемника, если температура теплоотдатчика T1=430 К. 8409. Во сколько раз увеличится коэффициент полезного действия η цикла Карно при повышении температуры теплоотдатчика от T1=380 К до T1'=560 К? Температура теплоприемника T2=280 К. 8410. Идеальная тепловая машина работает по циклу Карно. Температура теплоотдатчика T1=500 К, температура теплоприемника T2=250 К. Определить термически КПД η цикла, а также работу А1 рабочего вещества при изотермическом расширении, если при изотермическом сжатии совершена работа A2=70 Дж. 8411. Газ, совершающий цикл Карно, получает теплоту Q1=84 кДж. Определить работу А газа, если температура Т1 теплоотдатчика в три раза выше температуры T2 теплоприемника. 8412. В цикле Карно газ получил от теплоотдатчика теплоту Q1=500Дж и совершил работу A=100 Дж. Температура теплоотдатчика T1=400 К. Определить температуру T2 теплоприемника. 8413. Найти массу m воды, вошедшей в стеклянную трубку с диаметром канала d=0,8 мм, опущенную в воду на малую глубину. Считать смачивание полным. 8414. Какую работу А надо совершить при выдувании мыльного пузыря, чтобы увеличить его объем от V1=8 см3 до V2=16 см3? Считать процесс изотермическим. 8415. Какая энергия Е выделится при слиянии двух капель ртути диаметром d1=0,8 мм и d2=1,2 мм в одну каплю? 8416. Определить давление р внутри воздушного пузырька диаметром d=4 мм, находящегося в воде у самой ее поверхности. Считать атмосферное давление нормальным. 8417. Пространство между двумя стеклянными параллельными пластинками с площадью поверхности S=100 см2 каждая, расположенными на расстоянии l=20 мкм друг от друга, заполнено водой. Определить силу F, прижимающую пластинки друг к другу. Считать мениск вогнутым с диаметром d, равным расстоянию между пластинками. 8418. Глицерин поднялся в капиллярной трубке диаметром канала d=1 мм на высоту h=20 мм. Определить поверхностное натяжение α глицерина. Считать смачивание полным. 8419. В воду опущена на очень малую глубину стеклянная трубка с диаметром канала d=1 мм. Определить массу m воды, вошедшей в трубку. 8420. На сколько давление р воздуха внутри мыльного пузыря больше нормального атмосферного давления р0, если диаметр пузыря d=5 мм? 8421. Воздушный пузырек диаметром d=2,2 мкм находится в воде у самой ее поверхности. Определить плотность ρ воздуха в пузырьке, если воздух над поверхностью воды находится при нормальных условиях. 8422. Две капли ртути радиусом r=1,2 мм каждая слились в одну большую каплю. Определить энергию E, которая выделится при этом слиянии. Считать процесс изотермическим. 8423. Точечные заряды Q1=20 мкКл, Q2=-10 мкКл находятся на расстоянии d=5 см друг от друга. Определить напряженность поля в точке, удаленной на r1=3 см от первого и на r2=4 см от второго заряда. Определить также силу F, действующую в этой точке на точечный заряд Q=1 мкКл. 8424. Три одинаковых точечных заряда Q1=Q2=Q3=2 нКл находятся в вершинах равностороннего треугольника со сторонами a=10 см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других. 8425. Два положительных точечных заряда Q и 9Q закреплены на расстоянии d=100 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения зарядов возможны только вдоль прямой, проходящей через закрепленные заряды. 8426. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α. Шарики погружают в масло. Какова плотность ρ масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков ρ0=1,5•103 кг/м3, диэлектрическая проницаемость масла ε=2,2. 8427. Четыре одинаковых заряда Q1=Q2=Q3=Q4=40 кНл закреплены в вершинах квадрата со стороной a=10 см. Найти силу F, действующую на один из этих зарядов со стороны трех остальных. 8428. Точечные заряды Q1=30 мкКл и Q2=-20 мкКл находятся на расстоянии d=20 см друг от друга. Определить напряженность электрического поля Е в точке, удаленной от первого заряда на расстояние r1=30 cм, a от второго — на r2=15 см. 8429. В вершинах правильного треугольника со стороной a=10 см находятся заряды Q1=10 мкКл, Q2=20 мкКл и Q3=30 мкКл. Определить силу F, действующую на заряд Q1 со стороны двух других зарядов. 8430. В вершинах квадрата находятся одинаковые заряды Q1=Q2=Q3=Q4=8•10-10 Кл. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда? 8431. На расстоянии d=20см находятся два точечных заряда: Q1=-50нКл и Q2=100нКл. Определить силу F, действующую на заряд Q3=-10 нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d. 8432. Расстояние d между двумя точечными зарядами Q1=2 нКл и Q2=4 нКл равно 60 см. Определить точку, в которую нужно поместить третий заряд Q3 так, чтобы система зарядов находилась в равновесии. Определить заряд Q3 и его знак. Устойчивое или неустойчивое будет равновесие? 8433. Тонкий стержень длиной l=20 см несет равномерно распределенный заряд τ=0,1 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке A, лежащей на оси стержня на расстоянии a=20 см от его конца. 8434. По тонкому полукольцу радиуса R=10 см равномерно распределен заряд с линейной плотностью τ=1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. 8435. Тонкое кольцо несет распределенный заряд Q=0,2 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, равноудаленной от всех точек кольца на расстояние r=20 см. Радиус кольца R=10 см. 8436. Треть тонкого кольца радиуса R=10 см несет распределенный заряд Q=50 нКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. 8437. Бесконечный тонкий стержень, ограниченный с одной стороны, несет равномерно распределенный заряд с линейной плотностью τ=0,5 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке A, лежащей на оси стержня на расстоянии a=20 см от его начала. 8438. По тонкому кольцу радиусом R=20 см равномерно распределен с линейной плотностью τ=0,2 мкКл/м заряд. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке A, находящейся на оси кольца на расстоянии h=2R от его центра. 8439. По тонкому Полукольцу равномерно распределен заряд Q=20 мкКл с линейной плотностью τ=0,1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. 8440. Четверть тонкого кольца радиусом R=10 см несет равномерно распределенный заряд Q=0,05 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. 8441. По тонкому кольцу равномерно распределен заряд Q=10 нКл с линейной плотностью τ=0,01 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси кольца и удаленной от его центра на расстояние, равное радиусу кольца. 8442. Две трети тонкого кольца радиусом R=10 см несут равномерно распределенный с линейной плотностью τ=0,2 мкКл/м заряд. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. 8443. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 24). Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=4σ, σ2=σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ=30 нКл/м2, r=1,5R; 3) построить график E(r).
8444. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=σ, σ2=-σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ=0,1 мкКл/м2, r=3R; 3) построить график E(r). 8445. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=-4σ, σ2=σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ=50 нКл/м2, r=1,5R; 3) построить график E(r). 8446. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=-2σ, σ2=σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ=0,1 мкКл/м2, r=3R; 3) построить график E(r). 8447. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 25). Требуется: 1) используя теорему Остроградского—Гаусса и принцип суперпозиции электрических полей, найти выражение Е(х) напряженности электрического поля в трех областях: I, II и III. Принять σ1=2σ, σ2=σ; 2) вычислить напряженность Е поля в точке, расположенной слева от плоскостей, и указать направление вектора Е; 3) построить график Е(х).
8448. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса и принцип суперпозиции электрических полей, найти выражение Е(х) напряженности электрического поля в трех областях: I, II и III. Принять σ1=-4σ, σ2=2σ; 2) вычислить напряженность Е поля в точке, расположенной между плоскостями, и указать направление вектора Е; 3) построить график Е(х). 8449. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса и принцип суперпозиции электрических полей, найти выражение Е(х) напряженности электрического поля в трех областях: I, II и III. Принять σ1=σ, σ2=-2σ; 2) вычислить напряженность Е поля в точке, расположенной справа от плоскостей, и указать направление вектора Е; 3) построить график Е(х). 8450. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=-2σ, σ2=σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ=50 нКл/м2, r=1,5R; 3) построить график E(r). 8451. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=σ, σ2=-σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ=60 нКл/м2, r=3R; 3) построить график E(r). 8452. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1=-σ, σ2=4σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ=30 нКл/м2, r=4R; 3) построить график E(r). 8453. Два точечных заряда Q1=6 нКл и Q2=3 нКл находятся на расстоянии d=60 см друг от друга. Какую работу необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое? 8454. Электрическое поле создано заряженным проводящим шаром, потенциал φ которого 300 В. Определить работу сил поля по перемещению заряда Q=0,2 мкКл из точки 1 в точку 2 (рис. 27).
8455. Электрическое поле создано зарядами Q1=2 мкКл и Q2=-2 мкКл, находящимися на расстоянии a=10 см друг от друга. Определить работу сил поля, совершаемую при перемещении заряда Q=0,5 мкКл из точки 1 в точку 2 (рис. 28).
8456. Две параллельные заряженные плоскости, поверхностные плотности заряда которых σ1=2 мкКл/м2 и σ2=-0,8 мкКл/м2, находятся на расстоянии d=0,6 см друг от друга. Определить разность потенциалов U между плоскостями. 8457. Диполь с электрическим моментом р=100 пКл•м свободно установился в свободном электрическом поле напряженностью E=200 кВ/м. Определить работу внешних сил, которую необходимо совершить для поворота диполя на угол α=180º. 8458. Четыре одинаковых капли ртути, заряженных до потенциала φ=10 В, сливаются в одну. Каков потенциал φ1 образовавшейся капли? 8459. Тонкий стержень согнут в кольцо радиусом R=10 см. Он равномерно заряжен с линейной плотностью заряда τ=800 нКл/м. Определить потенциал φ в точке, расположенной на оси кольца на расстоянии h=10 см от его центра. 8460. Поле образовано точечным диполем с электрическим моментом р=200 пКл•м. Определить разность потенциалов U двух точек поля, расположенных симметрично относительно диполя на его оси на расстоянии r=40 см от центра диполя. 8461. Электрическое поле образовано бесконечно длинной заряженной нитью, линейная плотность заряда которой τ=20 пКл/м. Определить разность потенциалов U двух точек поля, отстоящих от нити на расстоянии r1=8 см и r2=12 см. 8462. Тонкая квадратная рамка равномерно заряжена с линейной плотностью заряда τ=200 пКл/м. Определить потенциал φ поля в точке пересечения диагоналей. 8463. Пылинка массой m=200 мкг, несущая на себе заряд Q=40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U=200 В пылинка имела скорость v=10 м/с. Определить скорость v0 пылинки до того, как она влетела в поле. 8464. Электрон, обладавший кинетической энергией Т=10 эВ, влетел в однородное электрическое поле в направлении силовых линий поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов U=8 В? 8465. Найти отношение скоростей ионов Cu++ и К+, прошедших одинаковую разность потенциалов. 8466. Электрон с энергией Т=400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R=10 см. Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если заряд ее Q=–10 нКл. 8467. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость v=105 м/с. Расстояние между пластинами d=8 мм. Найти: 1) разность потенциалов U между пластинами; 2) поверхностную плотность заряда σ на пластинах. 8468. Пылинка массой m=5 нг; несущая на себе N=10 электронов, прошла в вакууме ускоряющую разность потенциалов U=1 MB. Какова кинетическая энергия T пылинки? Какую скорость v приобрела пылинка? 8469. Какой минимальной скоростью vmin должен обладать протон, чтобы он мог достигнуть поверхности заряженного до потенциала φ=400 В металлического шара (рис.29)?
8470. В однородное электрическое поле напряженностью Е=200 В/м влетает (вдоль силовой линии) электрон со скоростью v0=2 Мм/с. Определить расстояние l, которое пройдет электрон до точки, в которой его скорость будет равна половине начальной. 8471. Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределенным зарядом (τ=10 нКл/м). Определить кинетическую энергию Т2 электрона в точке 2, если в точке 1 его кинетическая энергия П=200 эВ (рис.30).
8472. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ1=100 В электрон имел скорость V1=6 Мм/с. Определить потенциал φ2 точки поля, дойдя до которой электрон потеряет половину своей скорости. 8473. Конденсаторы емкостью С1=5 мкФ и С2=10 мкФ заряжены до напряжений U1=60 В и U2=100 В соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды. 8474. Конденсатор емкостью С1=10 мкФ заряжен до напряжения U=10 В. Определить заряд на обкладках этого конденсатора после того, как параллельно ему был подключен другой, незаряженный, конденсатор емкостью C2=20 мкФ. 8475. Конденсаторы емкостями С1=2 мкФ, C2=5 мкФ и С3=10 мкФ соединены последовательно и находятся под напряжением U=850 В. Определить напряжение и заряд на каждом из конденсаторов. 8476. Два конденсатора емкостями С1=2 мкФ и С2=5 мкФ заряжены до напряжений U1=100 В и U2=150 В соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими разноименные заряды. 8477. Два одинаковых плоских воздушных конденсатора емкостью С=100 пФ каждый соединены в батарею последовательно. Определить, на сколько изменится емкость С батареи, если пространство между пластинами одного из конденсаторов заполнить парафином. 8478. Два конденсатора емкостями С1=5 мкФ и С2=8 мкФ соединены последовательно и присоединены к батарее с ЭДС ε=80 В. Определить заряды Q1 и Q2 конденсаторов и разности потенциалов U1 и U2 между их обкладками. 8479. Плоский конденсатор состоит из двух круглых пластин радиусом R=10 см каждая. Расстояние между пластинами d=2 мм. Конденсатор присоединен к источнику напряжения U=80 В. Определить заряд Q и напряженность Е поля конденсатора в двух случаях: а) диэлектрик — воздух; б) диэлектрик — стекло. 8480. Два металлических шарика радиусами R1=5 см и R2=10 см имеют заряды Q1=40 нКл и Q2=-20 нКл соответственно. Найти энергию W, которая выделится при разряде, если шары соединить проводником. 8481. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: стекла толщиной d1=0,2 см и слоем парафина толщиной d2=0,3 см. Разность потенциалов между обкладками U=300 В. Определить напряженность Е поля и падение потенциала в каждом из слоев. 8482. Плоский конденсатор с площадью пластин S=200 см2 каждая заряжен до разности потенциалов U=2 кВ. Расстояние между пластинами d=2 см. Диэлектрик — стекло. Определить энергию W поля конденсатора и плотность энергии w поля. 8483. Катушка и амперметр соединены последовательно и подключены к источнику тока. К клеммам катушки присоединен вольтметр с сопротивлением r=4 кОм. Амперметр показывает силу тока I=0,3 А, вольтметр — напряжение U=120 В. Определить сопротивление R катушки. Определить относительную погрешность ε, которая будет допущена при измерении сопротивления, если пренебречь силой тока, текущего через вольтметр. 8484. ЭДС батареи ε=80 В, внутреннее сопротивление Ri=5 Ом, Внешняя цепь потребляет мощность Р=100 Вт. Определить силу тока I в цепи, напряжение U, под которым находится внешняя цепь, и ее сопротивление R. 8485. От батареи, ЭДС которой ε=600 В, требуется передать энергию на расстояние l=1 км. Потребляемая мощность R=5 кВт. Найти минимальные потери мощности в сети, если диаметр медных подводящих проводов d=0,5 см. 8486. При внешнем сопротивлении R1=8 Ом сила тока в цепи I1=0,8 А, при сопротивлении R2=15 Ом сила тока I2=0,5 А. Определить силу тока Iк.м. короткого замыкания источника ЭДС. 8487. ЭДС батареи ε=24 В. Наибольшая сила тока, которую может дать батарея, Imax=10 А. Определить максимальную мощность Рmax, которая может выделяться во внешней цепи. 8488. Аккумулятор с ЭДС ε=12 В заряжается от сети постоянного тока с напряжением U=15 В, Определить напряжение на клеммах аккумулятора, если его внутреннее сопротивление Ri=10 Ом. 8489. От источника с напряжением U=800 В необходимо передать потребителю мощность Р=10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10% от передаваемой мощности? 8490. При включении электромотора в сеть с напряжением U=220 В он потребляет ток I=5 А. Определить мощность, потребляемую мотором, и его КПД, если сопротивление R обмотки мотора равно 6 Ом. 8491. В сеть с напряжением U=100 В подключили катушку с сопротивлением R1=2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U1=80 В. Когда катушку заменили другой, вольтметр показал U2=60 В. Определить сопротивление R2 другой катушки. 8492. ЭДС батареи ε=12 В. При силе тока I=4 А КПД батареи=0,6. Определить внутреннее сопротивление Ri батареи. 8493. За время t=20 с при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике сопротивлением R=5 Ом выделилось количество теплоты Q=4 кДж. Определить скорость нарастания силы тока, если сопротивление проводника R=5 Ом. 8494. Сила тока в проводнике изменяется со временем по закону I=I0e-αt, где I0=20 А, α=102с-1. Определить количество теплоты, выделившееся в проводнике за время t=10-2 с. 8495. Сила тока в проводнике сопротивлением R=10 Ом за время t=50 с равномерно нарастает от I1=5 А до I2=10 А. Определить количество теплоты Q, выделившееся за это время в проводнике. 8496. В проводнике за время t=10 с при равномерном возрастании силы тока от I1=1 А до I2=2 А выделилось количество теплоты Q=5 кДж. Найти сопротивление R проводника. 8497. Сила тока в проводнике изменяется со временем по закону I=I0sinωt. Найти заряд Q, проходящий через поперечное сечение проводника за время t, равное половине периода T, если начальная сила тока I0=10 А, циклическая частота ω=50πс-1. 8498. За время t=10 с при равномерно возрастающей силе тока от нуля до некоторого максимума в проводнике выделилось количество теплоты Q=40 кДж. Определить среднюю силу тока <I> в проводнике, если его сопротивление R=25 Ом.
Страницы 79 80 81 82 83 [84] 85 86 87