Решение задач по физике. Онлайн-база готовых решений.

Поиск по задачам:
 Вход на сайт

Логин:
Пароль:
Регистрация
Забыли пароль?
 Навигация

 Опросы

Сколько задач Вы нашли у нас?

10%

20-30%

40-60%
60-80%
80-100%

Только для зарегестрированных пользователей
опросы пока не работают

6357. Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту п вращения, при которой кубик соскользнет с диска. 6358. Акробат на мотоцикле описывает «мертвую петлю» радиусом r=4 м. С какой наименьшей скоростью vmin должен проезжать акробат верхнюю точку петли, чтобы не сорваться? 6360. Самолет описывает петлю Нестерова радиусом R = 200 м. Во сколько раз сила F, с которой летчик давит на сиденье в нижней точке, больше силы тяжести Р летчика, если скорость самолета v=100 м/с? 6361. Грузик, привязанный к шнуру длиной l=50 см, описывает окружность в горизонтальной плоскости. Какой угол φ образует шнур с вертикалью, если частота вращения n=1 с-1? 6362. Грузик, привязанный к нити длиной l=1 м, описывает окружность в горизонтальной плоскости. Определить период Т обращения, если нить отклонена на угол φ=60° от вертикали. 6363. При насадке маховика на ось центр тяжести оказался на расстоянии r=0,1 мм от оси вращения. В каких пределах меняется сила F давления оси на подшипники, если частота вращения маховика n=10 с-1? Масса т маховика равна 100 кг. 6364. Мотоцикл едет по внутренней поверхности вертикального цилиндра радиусом R=11,2 м. Центр тяжести мотоцикла с человеком расположен на расстоянии l=0,8 м от поверхности цилиндра. Коэффициент трения f покрышек о поверхность цилиндра равен 0,6. С какой минимальной скоростью vmin должен ехать мотоциклист? Каков будет при этом угол φ наклона его к плоскости горизонта? 6365. Автомобиль массой m=5 т движется со скоростью v=10 м/с по выпуклому мосту. Определить силу F давления автомобиля на мост в его верхней части, если радиус R кривизны моста равен 50 м. 6366. Сосуд с жидкостью вращается с частотой n=2 с-1 вокруг вертикальной оси. Поверхность жидкости имеет вид воронки. Чему равен угол φ наклона поверхности жидкости в точках, лежащих на расстоянии r=5 см от оси? 6367. Автомобиль идет по закруглению шоссе, радиус R кривизны которого равен 200 м. Коэффициент трения f колес о покрытие дороги равен 0,1 (гололед). При какой скорости v автомобиля начнется его занос? 6368. Какую наибольшую скорость vmax может развить велосипедист, проезжая закругление радиусом R =50 м, если коэффициент трения скольжения f между шинами и асфальтом равен 0,3? Каков угол φ отклонения велосипеда от вертикали, когда велосипедист движется по закруглению? 6369. Самолет массой m=2,5 т летит со скоростью v=400 км/ч. Он совершает в горизонтальной плоскости вираж (вираж — полет самолета по дуге окружности с некоторым углом крена). Радиус R траектории самолета равен 500 м. Найти поперечный угол φ наклона самолета и подъемную силу F крыльев во время полета. 6370. Вал вращается с частотой n =2400 мин-1. К валу перпендикулярно его длине прикреплен стержень очень малой массы, несущий на концах грузы массой m=1 кг каждый, находящиеся на расстоянии r=0,2 м от оси вала. Найти: 1) силу F, растягивающую стержень при вращении вала; 2) момент М силы, которая действовала бы на вал, если бы стержень был наклонен под углом φ=89° к оси вала. 6371. Тонкое однородное медное кольцо радиусом R=10 см вращается относительно оси, проходящей через центр кольца, с угловой скоростью ω=10 рад/с. Определить нормальное напряжение σ, возникающее в кольце в двух случаях: 1) когда ось вращения перпендикулярна плоскости кольца и 2) когда лежит в плоскости кольца. Деформацией кольца при вращении пренебречь. 6372. Под действием постоянной силы F вагонетка прошла путь s=5 м и приобрела скорость v=2 м/с. Определить работу A силы, если масса m вагонетки равна 400 кг и коэффициент трения f=0,01. 6373. Вычислить работу А, совершаемую при равноускоренном подъеме груза массой m=100 кг на высоту h=4 м за время t=2 с. 6374. Найти работу А подъема груза по наклонной плоскости длиной l=2 м, если масса т груза равна 100 кг, угол наклона φ=30°, коэффициент трения f=0,1 и груз движется с ускорением а=1 м/с2. 6375. Вычислить работу А, совершаемую на пути s=12 м равномерно возрастающей силой, если в начале пути сила F1=10 H, в конце пути F2=46 H. 6376. Под действием постоянной силы F=400 H, направленной вертикально вверх, груз массой m=20 кг был поднят на высоту h=15 м. Какой потенциальной энергией П будет обладать поднятый груз? Какую работу А совершит сила F? 6377. Тело массой m=1 кг, брошенное с вышки в горизонтальном направлении со скоростью v0=20 м/с, через t=3 с упало на землю. Определить кинетическую энергию Т, которую имело тело в момент удара о землю. Сопротивлением воздуха пренебречь. 6378. Камень брошен вверх под углом φ=60° к плоскости горизонта. Кинетическая энергия Т0 камня в начальный момент времени равна 20 Дж. Определить кинетическую Т и потенциальную П энергии камня в высшей точке его траектории. Сопротивлением воздуха пренебречь. 6379. Насос выбрасывает струю воды диаметром d=2 см со скоростью v=20 м/с. Найти мощность N, необходимую для выбрасывания воды. 6380. Какова мощность N воздушного потока сечением S=0,55 м2 при скорости воздуха v=20 м/с и нормальных условиях? 6381. Вертолет массой m=3 т висит в воздухе. Определить мощность N, развиваемую мотором вертолета в этом положении, при двух значениях диаметра d ротора: 1) 18 м; 2) 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора. 6382. Материальная точка массой m=2 кг двигалась под действием некоторой силы, направленной вдоль оси Ох согласно уравнению x=A+Bt+Ct2+Dt3, где В=-2 м/с, С=1 м/с2, D=-0,2 м/с3. Найти мощность N, развиваемую силой в момент времени t1=2 с и t2=5 с. 6383. С какой наименьшей высоты h должен начать скатываться акробат на велосипеде (не работая ногами), чтобы проехать по дорожке, имеющей форму «мертвой петли» радиусом R=4 м, и не оторваться от дорожки в верхней точке петли? Трением пренебречь. 6384. Камешек скользит с наивысшей точки купола, имеющего форму полусферы. Какую дугу α опишет камешек, прежде чем оторвется от поверхности купола? Трением пренебречь. 6385. Мотоциклист едет по горизонтальной дороге. Какую наименьшую скорость v он должен развить, чтобы, выключив мотор, проехать по треку, имеющему форму «мертвой петли» радиусом R=4 м? Трением и сопротивлением воздуха пренебречь. 6386. При выстреле из орудия снаряд массой m1=10 кг получает кинетическую энергию T1=1,8 МДж. Определить кинетическую энергию T2 ствола орудия вследствие отдачи, если масса m2 ствола орудия равна 600 кг. 6387. Ядро атома распадается на два осколка массами m1=1,6•10-25 кг и m2=2,4•10-25 кг. Определить кинетическую энергию T2 второго осколка, если энергия T1 первого осколка равна 18 нДж. 6388. Конькобежец, стоя на льду, бросил вперед гирю массой m1=5 кг и вследствие отдачи покатился назад со скоростью v2=1 м/с. Масса конькобежца m2=60 кг. Определить работу A, совершенную конькобежцем при бросании гири. 6389. Молекула распадается на два атома. Масса одного из атомов в n=3 раза больше, чем другого. Пренебрегая начальной кинетической энергий и импульсом молекулы, определить кинетические энергии T1 и T2 атомов, если их суммарная кинетическая энергия T=0,032 нДж. 6390. На рельсах стоит платформа, на которой закреплено орудие без противооткатного устройства так, что ствол его расположен в горизонтальном положении. Из орудия производят выстрел вдоль железнодорожного пути. Масса m1 снаряда равна 10 кг, и его скорость u1=1 км/с. На какое расстояние l откатится платформа после выстрела, если коэффициент сопротивления f=0,002, Mпл = 20 т. 6391. Пуля массой m=10 г, летевшая со скоростью v=600 м/с, попала в баллистический маятник (рис. 2.9) массой M=5 кг и застряла в нем. На какую высоту h, откачнувшись после удара, поднялся маятник?
6392. В баллистический маятник массой М=5 кг попала пуля массой m=10 г и застряла в нем. Найти скорость v пули, если маятник, отклонившись после удара, поднялся на высоту h=10 см. 6393. Два груза массами m1=10 кг и m2=15 кг подвешены на нитях длиной l=2 м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол φ=60° и выпущен. Определить высоту h, на которую поднимутся оба груза после удара. Удар грузов считать неупругим. 6394. Два неупругих шара массами m1=2 кг и m2=3 кг движутся со скоростями соответственно v1=8 м/с и v2=4 м/с. Определить увеличение ΔU внутренней энергии шаров при их столкновении в двух случаях: 1) меньший шар нагоняет больший; 2) шары движутся навстречу друг другу. 6395. Шар массой m1, летящий со скоростью v1=5 м/с, ударяет неподвижный шар массой m2. Удар прямой, неупругий. Определить скорость и шаров после удара, а также долю ω кинетической энергии летящего шара, израсходованной на увеличение внутренней энергии этих шаров. Рассмотреть два случая: 1) m1=2 кг, m2=8 кг; 2) m1=8 кг, m2=2 кг. 6396. Шар массой m1=2 кг налетает на покоящийся шар массой m2=8 кг. Импульс p1 движущегося шара равен 10 кг м/с. Удар шаров прямой, упругий. Определить непосредственно после удара: 1) импульсы p'1 первого шара и р'2 второго шара; 2) изменение Δр1 импульса первого шара; 3) кинетические энергии Т1' первого шара и Т2' второго шара; 4) изменение ΔТ1 кинетической энергии первого шара; 5) долю ω кинетической энергии, переданной первым шаром второму. 6397. Шар массой m1=6 кг налетает на другой покоящийся шар массой m2=4 кг. Импульс p1 первого шара равен 5 кг•м/с. Удар шаров прямой, неупругий. Определить непосредственно после удара: 1) импульсы р1' первого шара и р2' второго шара; 2) изменение Δр1 импульса первого шара; 3) кинетические энергии Т1' первого шара и Т2' второго шара; 4) изменение ΔТ1 кинетической энергии первого шара; 5) долю ω1 кинетической энергии, переданной первым шаром второму и долю ω2 кинетической энергии, оставшейся у первого шара; 6) изменение ΔU внутренней энергии шаров; 7) долю ω кинетической энергии первого шара, перешедшей во внутреннюю энергию шаров. 6398. Молот массой m1=5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД η удара молота при данных условиях. 6399. Боек свайного молота массой m1=500 кг падает с некоторой высоты на сваю массой m2=100 кг. Найти КПД η удара бойка, считая удар неупругим. Изменением потенциальной энергии сваи при углублении ее пренебречь. 6400. Молотком, масса которого m1=1 кг, забивают в стену гвоздь массой m2=75 г. Определить КПД η удара молотка при данных условиях. 6401. Шар массой m1=200 г, движущийся со скоростью v1=10 м/с, ударяет неподвижный шар массой m2=800 г. Удар прямой, абсолютно упругий. Каковы будут скорости v1 и v2 шаров после удара? 6402. Шар массой m=1,8 кг сталкивается с покоящимся шаром большей массы М. В результате прямого упругого удара шар потерял ω=0,36 своей кинетической энергии T1. Определить массу большего шара. 6403. Из двух соударяющихся абсолютно упругих шаров больший шар покоится. В результате прямого удара меньший шар потерял ω=3/4 своей кинетической энергии T1. Определить отношение k=M/m масс шаров. 6404. Определить максимальную часть ω кинетической энергии T1, которую может передать частица массой m1=2•l0-22 г, сталкиваясь упруго с частицей массой m2=6•10-25 г, которая до столкновения покоилась. 6405. Частица массой m1=10-25 кг обладает импульсом p1=5•10-20 кг м/с. Определить, какой максимальный импульс р2 может передать эта частица, сталкиваясь упруго с частицей массой m2=4•10-25 кг, которая до соударения покоилась. 6406. На покоящийся шар налетает со скоростью v1=2 м/с другой шар одинаковой с ним массы. В результате столкновения этот шар изменил направление движения на угол α=30°. Определить: 1) скорости u1 и u2 шаров после удара; 2) угол β между вектором скорости второго шара и первоначальным направлением движения первого шара. Удар считать упругим. 6407. Частица массой m1=10-24 г имеет кинетическую энергию T1=9 нДж. В результате упругого столкновения с покоящейся частицей массой m2=4•10-24 г она сообщает ей кинетическую энергию Т2=5 нДж. Определить угол α на который отклонится частица от своего первоначального направления. 6408. Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см. 6409. Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс. 6410. Два шара массами m и 2m (m=10 г) закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7, а, б. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь. 6411. Три маленьких шарика массой m=10 г каждый расположены в вершинах равностороннего треугольника со стороной а=20 см и скреплены между собой. Определить момент инерции J системы относительно оси: 1) перпендикулярной плоскости треугольника и проходящей через центр описанной окружности; 2) лежащей в плоскости треугольника и проходящей через центр описанной окружности и одну из вершин треугольника. Массой стержней, соединяющих шары, пренебречь. 6412. Определить моменты инерции Jx, Jy, Jz трехатомных молекул типа АВ2 относительно осей х, у, z (рис. 3.8), проходящих через центр инерции С молекулы (ось z перпендикулярна плоскости ху). Межъядерное расстояние А В обозначено d, валентный угол α. Вычисления выполнить для следующих молекул: 1) H2O (d=0,097 нм, α=104° 30'); 2) SO2(d=0,145нм, α=124°). 6413. Определить момент инерции J тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через: 1) его конец; 2) его середину; 3) точку, отстоящую от конца стержня на 1/3 его длины. 6414. Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на а=20 см от одного из его концов. 6415. Вычислить момент инерции J проволочного прямоугольника со сторонами а=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линей ной плотностью τ=0,1 кг/м. 6416. Два однородных тонких стержня: АВ длиной l1=40 см и массой m1=900 г и CD длиной l2=40 см и массой l2=400 г скреплены под прямым углом (рис. 3.9). Определить момент инерции J системы стержней относительно оси OO', проходящей через конец стержня АВ параллельно стержню CD. 6417. Решить предыдущую задачу для случая, когда ось OO' проходит через точку А перпендикулярно плоскости чертежа. 6418. Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса т треугольника равна 12 г и равномерно распределена по длине проволоки. 6419. На концах тонкого однородного стержня длиной l и массой 3m прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стержню и проходящей через точку О, лежащую на оси стержня. Вычисления выполнить для случаев а, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки. 6420. Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр. 6421. Определить момент инерции J кольца массой m=50 г и радиусом R=10 см относительно оси, касательной к кольцу. 6422. Диаметр диска d=20 см, масса m=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. 6423. В однородном диске массой m=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр. 6424. Найти момент инерции J плоской однородной прямоугольной пластины массой m=800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см. 6425. Определить момент инерции J тонкой плоской пластины со сторонами а=10 см и b=20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью σ=1,2 кг/м2. 6426. Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое аn и тангенциальное аτ ускорения точки В на стержне. Вычисления произвести для следующих случаев: 1) a=0, b=2/3l, α=π/2; 2) a=l/3, b=l, α=π/3; 3) a/l/4, b=l/2, α=2/3π. 6427. Однородный диск радиусом R = 10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол а и отпустили. Определить для начального момента времени угловое ε и тангенциальное аτ ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев: 1) a=R, b=R/2, α=π/2; 2) a=R/2, b=R, α=π/6; 3) a=2/3R, b=2/3R, α=2/3π. 6428. Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением ε=3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент М. 6429. На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой т=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=l,8 м за время t=3 с, Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой. 6430. Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 H, под действием которой вал остановился через t=10 с. Определить коэффициент трения f. 6431. На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение а оси цилиндра, если цилиндр: 1) сплошной; 2) полый тонкостенный. 6432. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и m2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало. 6433. Два тела массами m1=0,25 кг и m2=0,15 кг связаны тон, кой нитью, переброшенной через блок (рис. 3.15). Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой m1. С каким ускорением а движутся тела и каковы силы T1 и Т2 натяжения нити по обе. стороны от блока? Коэффициент трения f тела о поверхность стола равен 0,2. Масса m блока равна 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь. 6434. Через неподвижный блок массой m=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1=0,3 кг и m2=0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу. 6435. Шар массой m=10 кг и радиусом R=20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид φ=A+Bt2+Ct3, где В=4 рад/с2, С=-1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил М в момент времени t=2 с. 6436. Однородный тонкий стержень массой m1=0,2 кг и длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О (рис. 3.16). В точку А на стержне попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью v=10 м/с и прилипает к стержню. Масса m2 шарика равна 10 г. Определить угловую скорость ω стержня и линейную скорость и нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между точками А и О: 1) l/2; 2) l/3; 3) l/4. 6437. Однородный диск массой m1= 0,2 кг и радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку С (рис. 3.17). В точку, А на образующей диска попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью v=10 м/с, и прилипает к его поверхности. Масса m2 шарика равна 10 г. Определить угловую скорость ω диска и линейную скорость u точки О на диске в начальный момент времени. Вычисления выполнить для следующих значений а и b: 1) a=b=R; 2) a=R/2,b =R; 3) a=2R/3, b=R/2; 4) a=R/3, b=2R/3. 6438. Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью v=20 м/с. Траектория мяча проходит на расстоянии r=0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью ? начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг•м2? 6439. Маховик, имеющий вид диска радиусом R=40 см и массой т1=48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой m2= 0,2 кг (рис. 3.18). Груз был приподнят и затем опущен. Упав свободно с высоты h=2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость ω груз сообщил при этом маховику? 6440. На краю горизонтальной платформы, имеющей форму диска радиусом R=2м, стоит человек массой m1=80кг. Масса m2 платформы равна 240 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью ω будет вращаться платформа, если человек будет идти вдоль ее края со скоростью v=2 м/с относительно платформы. 6441. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой m1=60 кг. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса m2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки. 6442. Платформа в виде диска радиусом R=1 м вращается по инерции с частотой n1=6мин-1. На краю платформы стоит человек, масса т которого равна 80 кг. С какой частотой п будет вращаться платформа, если человек перейдет в, ее центр? Момент инерции J платформы равен 120 кг•м2. Момент инерции человека рассчитывать как для материальной точки. 6443. В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой m=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1=1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг•м2. 6444. Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n=10 с-1. Радиус R колеса равен 20 см, его масса m=3 кг. Определить частоту вращения n2 скамьи, если человек повернет стержень на угол 180°? Суммарный момент инерции J человека и скамьи равен 6 кг•м2. Массу колеса можно считать равномерно распределенной по ободу. 6445. Шарик массой m=100 г, привязанный к концу нити длиной l1=l м, вращается, опираясь на горизонтальную плоскость, с частотой n1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2=0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь. 6446. Маховик вращается по закону, выражаемому уравнением φ=A+Bt+Ct2, где A=2 рад, B=32 рад/с, С=-4 рад/с2. Найти среднюю мощность , развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J=100 кг•м2. 6447. Маховик вращается по закону, выражаемому уравнением φ=A+Bt+Ct2, где А=2 рад, В=16 рад/с, С=-2 рад/с2. Момент инерции J маховика равен 50 кг•м2. Найти законы, по которым меняются вращающий момент М и мощность N. Чему равна мощность в момент времени t=3 с? 6448. Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N=500 Вт. 6449. Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой и=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения Т2 ведомой ветви. Найти силы натяжения обеих ветвей ремня. 6450. Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз Р.Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса т груза равна 1 кг и показание динамометра F=24 Н. 6451. Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n=10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус? 6452. Кинетическая энергия Т вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент М силы торможения. 6453. Маховик, момент инерции J которого равен 40 кг•м2, начал вращаться равноускоренно из состояния покоя под действием момента силы М=20 Н•м. Вращение продолжалось в течение t=10 с. Определить кинетическую энергию Т, приобретенную маховиком. 6454. Пуля массой m=10 г летит со скоростью v=800 м/с, вращаясь около продольной оси с частотой n=3000 с-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию Т пули. 6455. Сплошной цилиндр массой m=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость v оси цилиндра равна 1 м/с. Определить полную кинетическую энергию T цилиндра. 6456. Обруч и сплошной цилиндр, имеющие одинаковую массу m=2 кг, катятся без скольжения с одинаковой скоростью v=5 м/с. Найти кинетические энергии Т1 и Т2 этих тел. 6457. Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия Т шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара. 6458. Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=1 м.
Страницы 59 60 61 62 63 [64] 65 66 67 68 69